Summary

Professor, Mathematics, George Mason University

Information

Web:   Personal website   Research Group  CV  Google Scholar  LinkedIn

Email: memelian@gmu.edu
Phone:  (703) 993-9688
Address:    Exploratory Hall, Room 4454
Fairfax, VA 22030

Education

Penn State University
Doctor of Philosophy (Ph.D.)
Mathematics
2002 – 2005

Penn State University
M.A.
Mathematics
1999 – 2002

Lomonosov Moscow State University (MSU)
M.S.
Applied Mathematics/CS
1996 – 2001

Experience

Professor
George Mason University
May 2017 – Present
George Mason University

Associate Professor
George Mason University
Jun 2012 – Present
George Mason University

Assistant Professor
George Mason University
Aug 2007 – Jul 2012

Postdoctoral Research Associate
Carnegie Mellon University
Aug 2005 – Aug 2007

Research Assistant
Penn State University
Aug 2002 – Aug 2005

Research Areas

My research is in the area of applied mathematics with main focus on modeling and development of efficient numerical algorithms. I’m especially interested in problems arising on the interface between mathematical and physical or biological sciences/engineering. At present I’m studying theoretical and simulation aspects of grain growth in complex materials. Other projects I am involved with include the design of fast new algorithms for quantization and clustering with the use of the concepts like centroidal Voronoi tessellations, and optimization methods for the determination of phase diagrams for multicomponent materials and developing methods for ill-conditioned linear systems. I am also collaborating with biologists and chemists on a number of projects. Before coming to GMU, I obtained my PhD at Penn State and spent two years as a CNA postdoc at Carnegie Mellon University where I took part in the interdepartmental MRSEC initiative (MIMP).

Publications by Research Areas

  • Mathematical aspects of materials science, chemistry and engineering
    • D. Torrejon, M. Emelianenko, D. Golovaty, “Continuous time random walk based theory for a one-dimensional coarsening model”, J. Ellip. Parab. Eq., vol. 2 (2016), p. 183–199 [pdf]
    • R. Otis, M. Emelianenko, Z-K. Liu, “Efficient sampling strategies for global energy minimization of multi-component phases with internal degrees of freedom”, Comp. Mat. Sci. , vol. 130 (2017) p.282-291 [pdf]
    • I. Yegorov, C. Torres, M. Emelianenko, “A Boltzmann-type kinetic model for misorientation distribution functions in two-dimensional fiber-texture polycrystalline grain growth”, Acta Materialia, 109 (2016) p. 230–247 [pdf]
    • K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, S. Ta’asan, “Recent Developments in Material Microstructure: a Theory of Coarsening”, Mater. Res. Soc. Symp. Proc., Cambridge Journals, 1753 (2015) [pdf]
    • C.Torres, M. Emelianenko, D. Golovaty, D. Kinderlehrer, S.Ta’asan, “Numerical analysis of the vertex models for simulating grain boundary networks”, SIAM J. Appl. Math., 75(2) (2015), p. 762–786 [pdf]
    • J. Snider, I. Griva, X. Sun, M. Emelianenko “Set-based framework for Gibbs energy minimization”, CALPHAD, 48, (2015), p. 18–26 [pdf]
    • M. Emelianenko, D. Torrejon, M. DeNardo, A. Socolofsky, A. Ryabov, T. Collins, ”Estimation of Rate Constants in Nonlinear Reactions Involving Chemical Inactivation of Oxidation Catalysts”, J. Math. Chem., 52, Issue 5 (2014), p. 1460–1476 [pdf]
    • K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R.Sharp, and S.Ta’asan, “Materials microstructures: entropy and curvature driven coarsening”, RIMS Proceedings, U. Kyoto, 1881, p. 71-91 (2014) [pdf]
    • K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R.Sharp, and S.Ta’asan, “Predictive theory for the grain boundary character distribution”, Materials Science Forum, 715-716, 2012, p.279–285 (Special Issue on ReX and GG IV) [pdf]
    • K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, S. Ta’asan “Critical events, entropy, and the grain boundary character distribution”, Physical Review B, Vol. 83, 134117 (2011) [pdf]
      Viewpoint by R. Kohn
    • K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, S. Ta’asan, “An entropy based theory of the grain boundary character distribution”, DCDS-A, Vol. 30, no. 2 (2011), p.427–454 [pdf]
    • M. Atkins (mentors: D. Anderson, M. Emelianenko, Y.Mishin) “A Method of Calculating the Thickness of a Solid-Liquid Interface”, SIAM Undergraduate Research Online, Vol. 3, 2010 [pdf]
    • K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, S. Ta’asan, “Geometric growth and character development in large metastable systems”, Rendiconti di Matematica, Serie VII, 29, Roma (2009), p.65–81 [pdf]
    • K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer, and S. Ta’asan., “On a statistical theory of critical events in microstructural evolution”, Proc. of the 11th International Symposium on Continuum Models and Discrete Systems (CMDS11), Paris, France, 30 July – 3 August 2007 [pdf]
    • K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, S. Ta’asan, “An Entropy Based Theory of the Grain Boundary Character Distribution”, Center for Nonlinear Analysis, No. 11-CNA-001, 2011 [pdf]
    • K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, “Critical Events, Entropy, and the Grain Boundary Character Distribution”, Center for Nonlinear Analysis, No. 10-CNA-014, 2010 [pdf]
    • K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, S. Ta’asan, “Predictive Theory for the Grain Boundary Character Distribution”, Center for Nonlinear Analysis, No. 10-CNA-013, 2010 [pdf]
    • K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer, S. Ta’asan, “On a statistical theory of critical events in microstructure evolution”, Center for Nonlinear Analysis, No. 07-CNA-005, 2007 [pdf]
    • K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer, and S. Ta’asan., “A new perspective on texture evolution”, Intl. J. of Num. Anal. and Modeling, 5 Supp (2008), p.93–108 [pdf]
    • K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer, S. Ta’asan, “Towards a statistical theory of texture evolution in polycrystals”, SIAM J. Sci. Comput., 30 No. 6 (2008), p. 3150–3169 [pdf]
    • M. Emelianenko, D. Golovaty, D. Kinderlehrer, S. Ta’asan, “Texture evolution via continuous time random walk theory”, Center for Nonlinear Analysis, No. 06-CNA-011, 2006 [pdf]
    • M. Emelianenko, D. Golovaty, D. Kinderlehrer, S. Ta’asan, “Grain boundary evolution: new perspectives”, Center for Nonlinear Analysis, No. 06-CNA-010, 2006[pdf]
    • M. Emelianenko, Z.-K. Liu, Q. Du, “A New Algorithm for the Automation of Phase Diagram Calculation”, Comp. Mater. Sci., 35, issue 1 (2006), 61-74 (In ScienceDirect Top 25 Hottest Articles)[pdf]
  • Voronoi tesselations. Theory and applications
    • J. Zhang, M. Emelianenko, Q. Du, “Periodic centroidal Voronoi tessellations”, Intern. J. Num. Anal. Modeling, 9, p.950-969 (2012) [pdf]
    • Z.Di, M. Emelianenko, S. Nash, “Truncated Newton-based multigrid algorithm for centroidal Voronoi calculation”, Numer. Math. Theor. Meth. Appl., 5, No. 1 (2012), pp. 242-259 [pdf]
    • M. Emelianenko, “Fast Multilevel CVT-based Adaptive Data Visualization Algorithm”, Numer. Math. Theor. Meth. Appl., 3, No. 2 (2010), p.195-211 [pdf]
    • M. Emelianenko, L. Ju, A. Rand, “Weak global convergence of the Lloyd method for computing centroidal Voronoi tessellations in R^d”, SIAM J. Numer. Anal., 46 Issue 3 (2008), p.1423-1441 [pdf]
    • Q. Du, M. Emelianenko “Uniform convergence of a nonlinear energy-based multilevel quantization scheme via centroidal Voronoi tessellations”, SIAM J. Numer. Anal., 46, Issue 3 (2008), p. 1483-1502[pdf]
    • Q. Du, M. Emelianenko and L. Ju, “Convergence properties of the Lloyd algorithm for computing the centroidal Voronoi tessellations”, SIAM J. Numer. Anal., 44, Issue 1 (2006), 102-119[pdf]
    • Q. Du, M. Emelianenko, “Acceleration schemes for computing the centroidal Voronoi tessellations”, Numer. Linear Algebra Appl.,13, Issue 2-3 (Special Issue on Multigrid Methods) (2006), 173-192[pdf]
    • Q. Du, M. Emelianenko, H.-C. Lee and X. Wang, “Ideal point distributions, best mode selections and optimal spatial partitions via centroidal Voronoi tessellations”, in proceedings of the 2nd International Symposium on Voronoi Diagrams in Sciences and Engineering, Seoul, Korea, Oct 2005 (VD2005), pp. 325-333, 2005 [pdf]
    • Q. Du, M. Emelianenko, “Uniform convergence of a multilevel energy-based quantization scheme”, Lecture Notes in Comp. Sci. Eng., 55, Widlund, Olof B.; Keyes, David E. (Eds.), Springer, Berlin (2007), p.533-541 [pdf]
  • Bioinformatics, telecommunications and linear algebra
    • A. Baranova, J. Bode, G. Manyam, M. Emelianenko, “An efficient algorithm for systematic analysis of nucleotide strings suitable for siRNA design”, BMC Res. Notes, 4(1):168 (2011) [pdf]
    • M. Yacoubi, M. Emelianenko and N. Gautam, “Pricing in next generation network queuing model to guarantee QoS”, Perform. Evaluation, 5, issue 1 (2003), 59-84 (In Top 10 downloads from Performance Evaluation website in 2003)[pdf]
    • E.B. Dushanov, M.G. Emelianenko and G.Yu. Konovalova, “On formats of the representation of real numbers and algorithm for automatic declaration of constants of the computer real arithmetic”, J. Comput. Meth. Sci. Eng., 2, issue 1-2 (2002), 57-62
    • G.A. Emelyanenko, V.N. Samoilov and M.G. Emelianenko, “The uncertainty principle in numerical linear algebra”, in International Conference on Computational Mathematics. Part I, II, (2002), 104–106, ICMMG, Novosibirsk [pdf]
    • G.A. Emel’yanenko, M. Emelianenko, T.T. Rakhmonov, E.B. Dushanov, G.Yu. Konovalova, “On effciency of critical-component method for solving singular and ill-posed systems of linear algebraic equations”, arXiv:math/0108074, 2001
  • Books:M. Emelianenko, “Multilevel and adaptive methods for nonlinear optimization problems”, VDM-Verlag, ISBN 978-3-639-22436-8, 2010 [Amazon link]

 

Leave a Reply

Skip to toolbar